

The case for stochastic orbital migration

Hanno Rein @ Kobe, August 2013

Extra-solar planet census

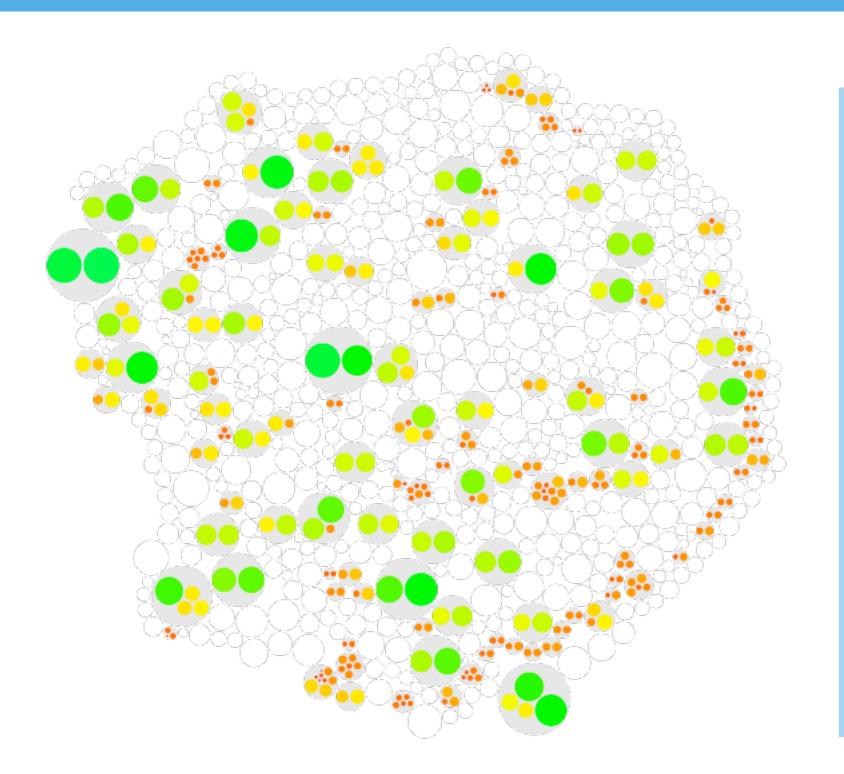
All discovered extra-solar planets



869 confirmed extrasolar planets

- Super-Jupiters
- (Hot) Jupiters
- Neptunes
- Super-Earths
- Earth-like planets

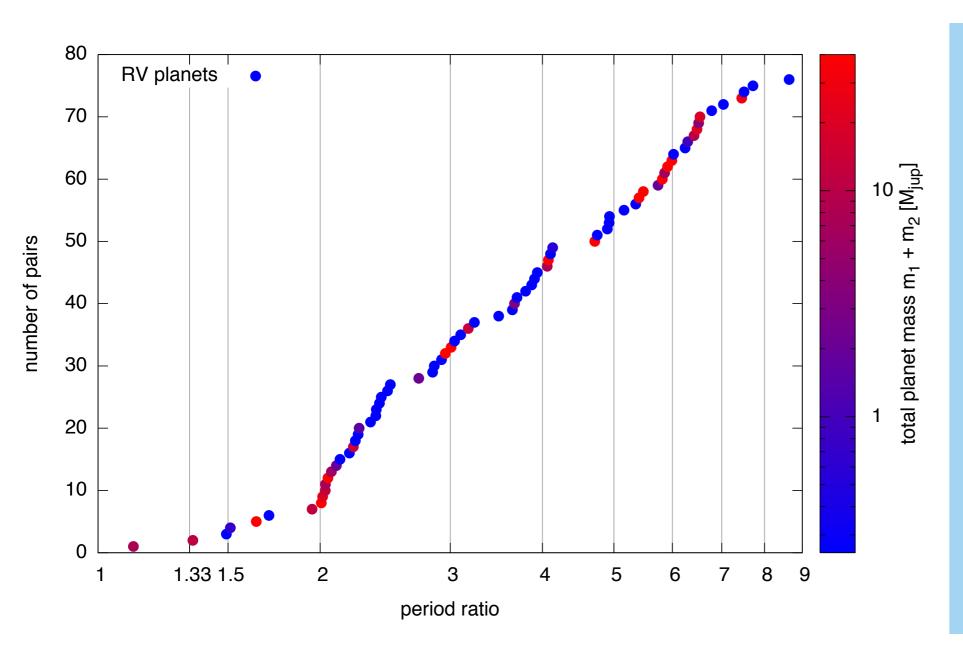
All multi-planetary systems



327 confirmed planets in multi-planetary systems

- Multiple Jupiters
- Densely packed systems of Neptunes and (Super)-Earths
- I Solar System
- Some systems are deep in resonance

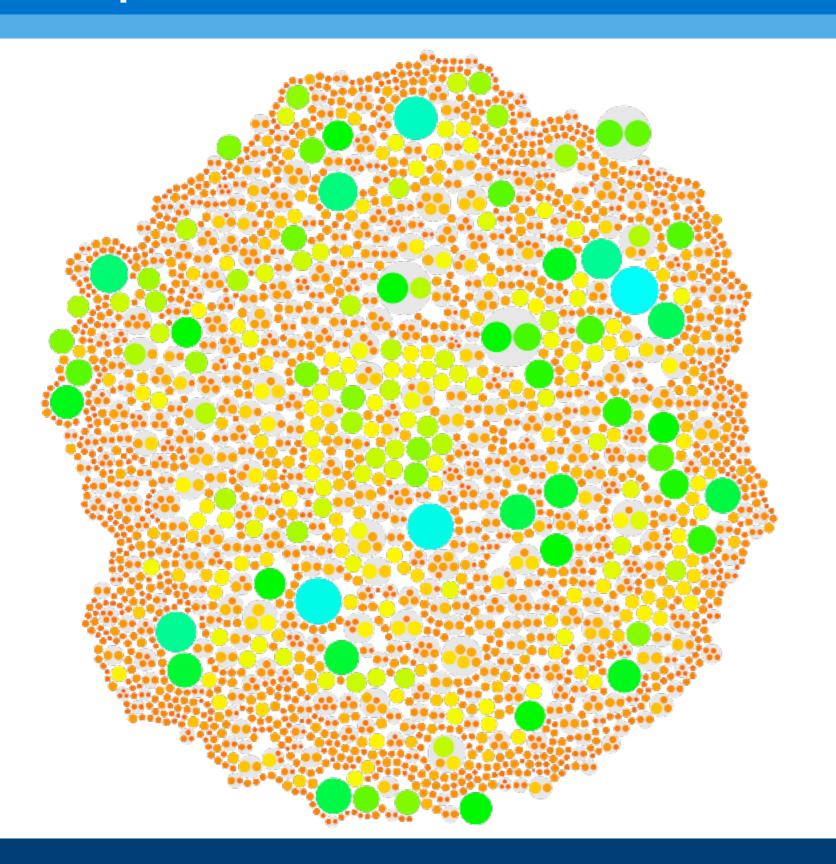
Radial velocity planets



Cumulative period ratio in multiplanetary systems

- Periods of systems with massive planets tend to pile up near integer ratios
- Most prominent features at 4:1, 3:1, 2:1, 3:2

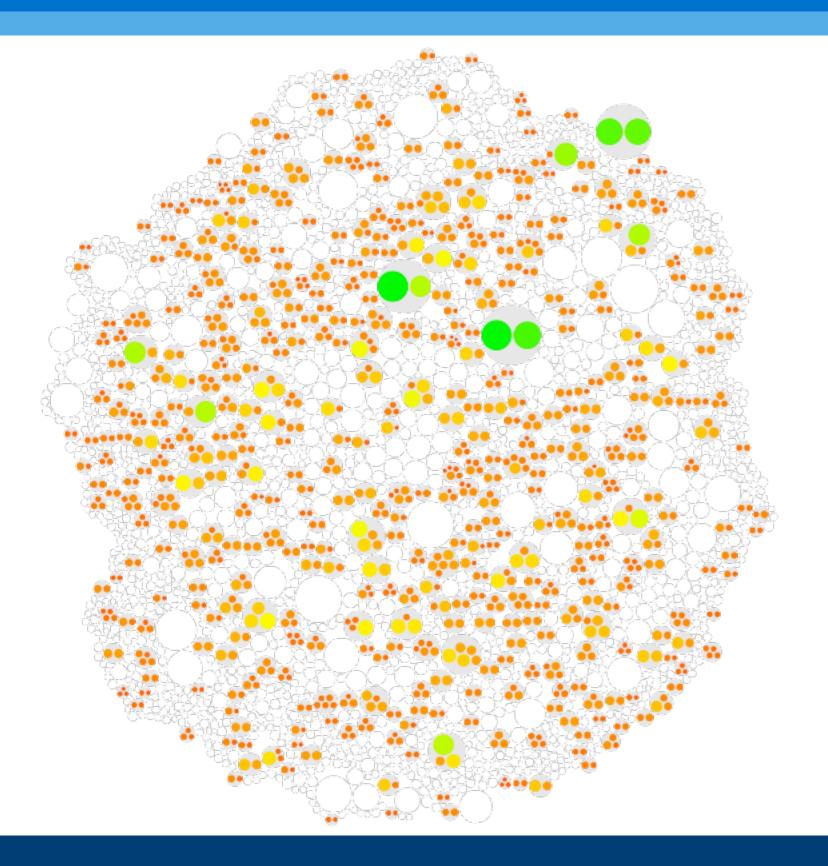
Kepler candidates



2740 planet candidates

- Probing a different regime
- Small mass planets
- A lot of planets

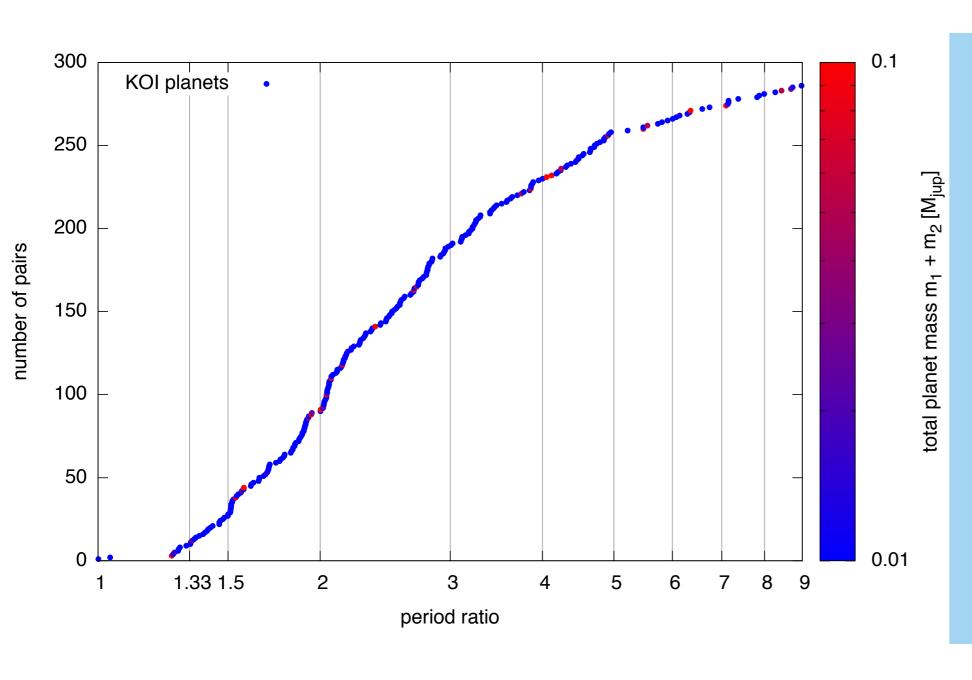
Kepler candidates with multiple planets



Kepler multi-planetary systems

- Small mass planets
- Hierarchical systems
- Densely packed
- Not many are in resonance

Kepler's transiting planet candidates

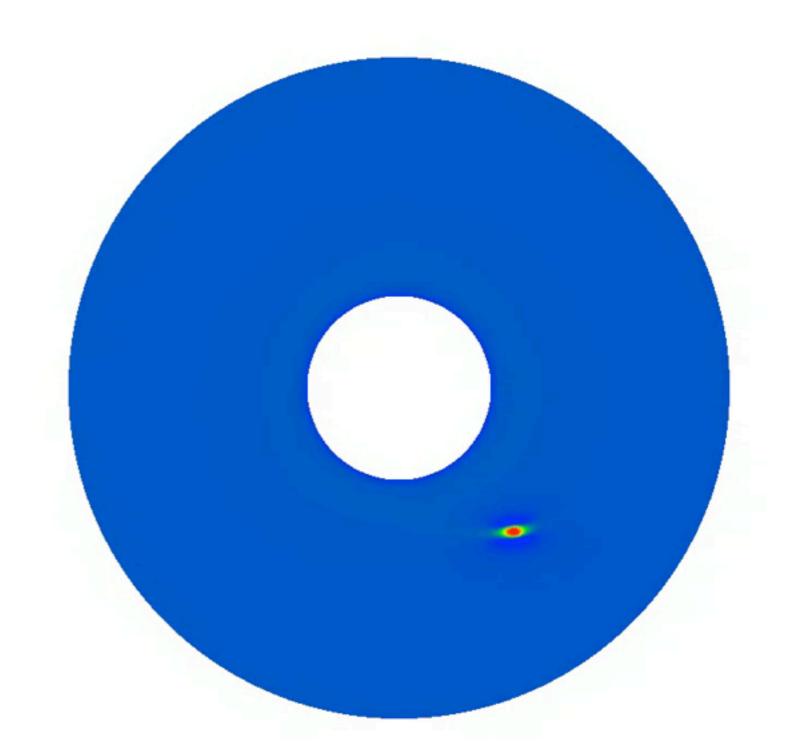


- Period ratio
 distribution much
 smoother for small
 mass planets
- Deficiencies near 4:3,3:2, 2:1
- Excess slightly outside of the exact commensurability

Stochastic orbital migration

Migration - Type I

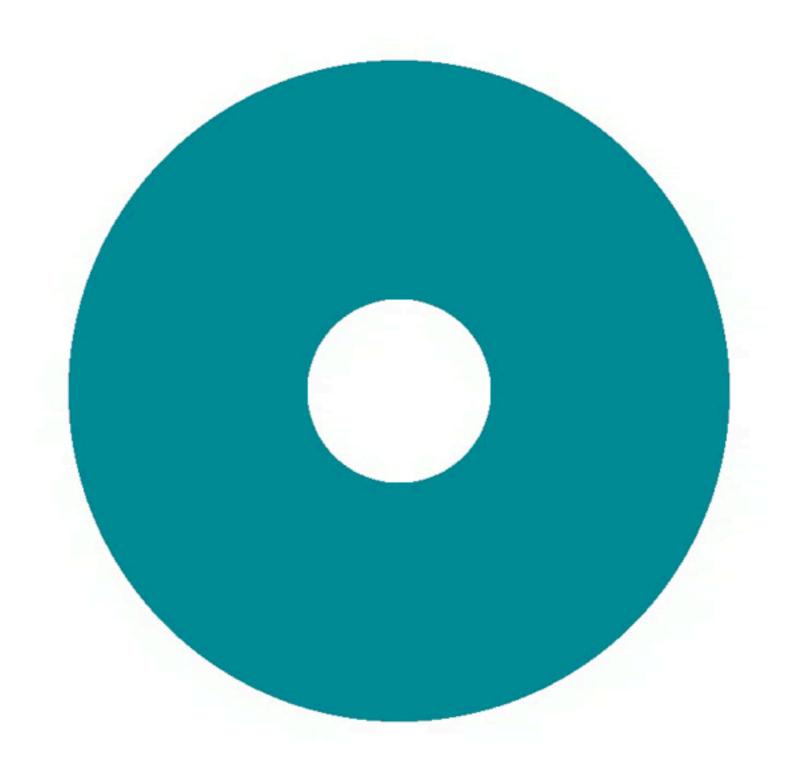
- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc



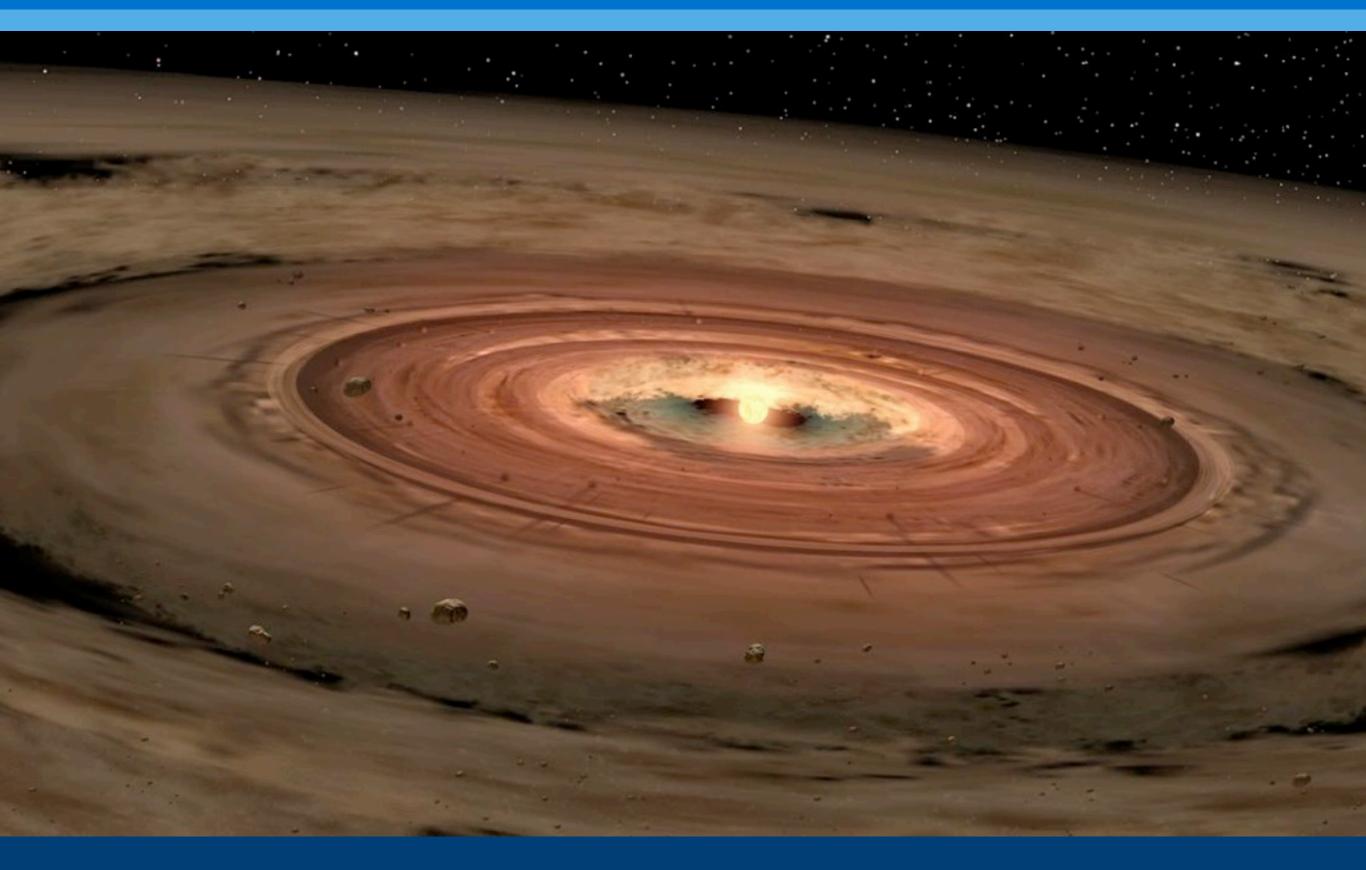
Migration - Type II

- Massive planets

 (typically bigger than Saturn)
- Opens a (clear) gap
- Migration rate is slow
- Follows viscous evolution of the disc

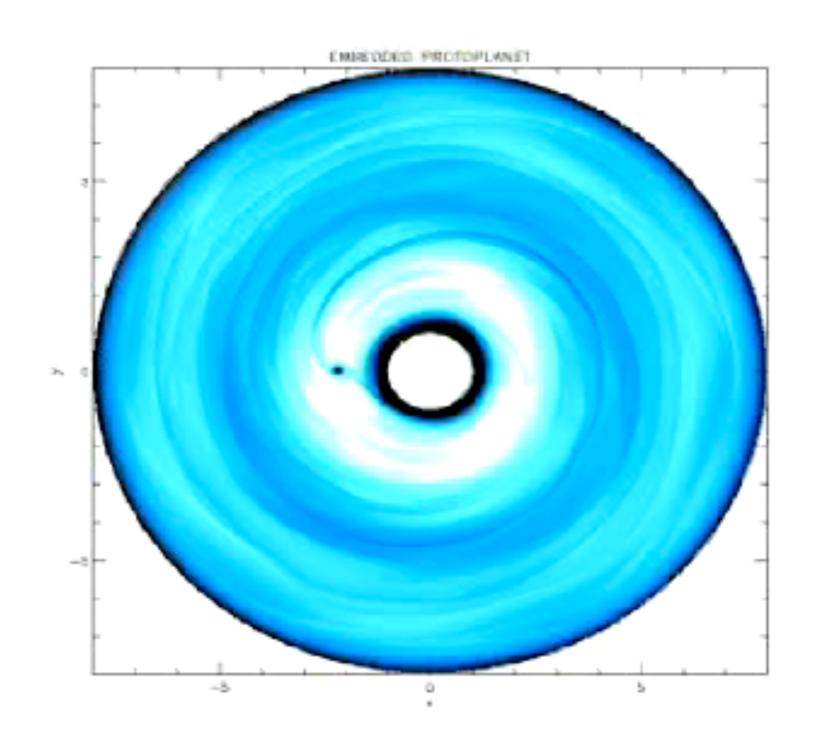


How does a real protoplanetary disk look like?

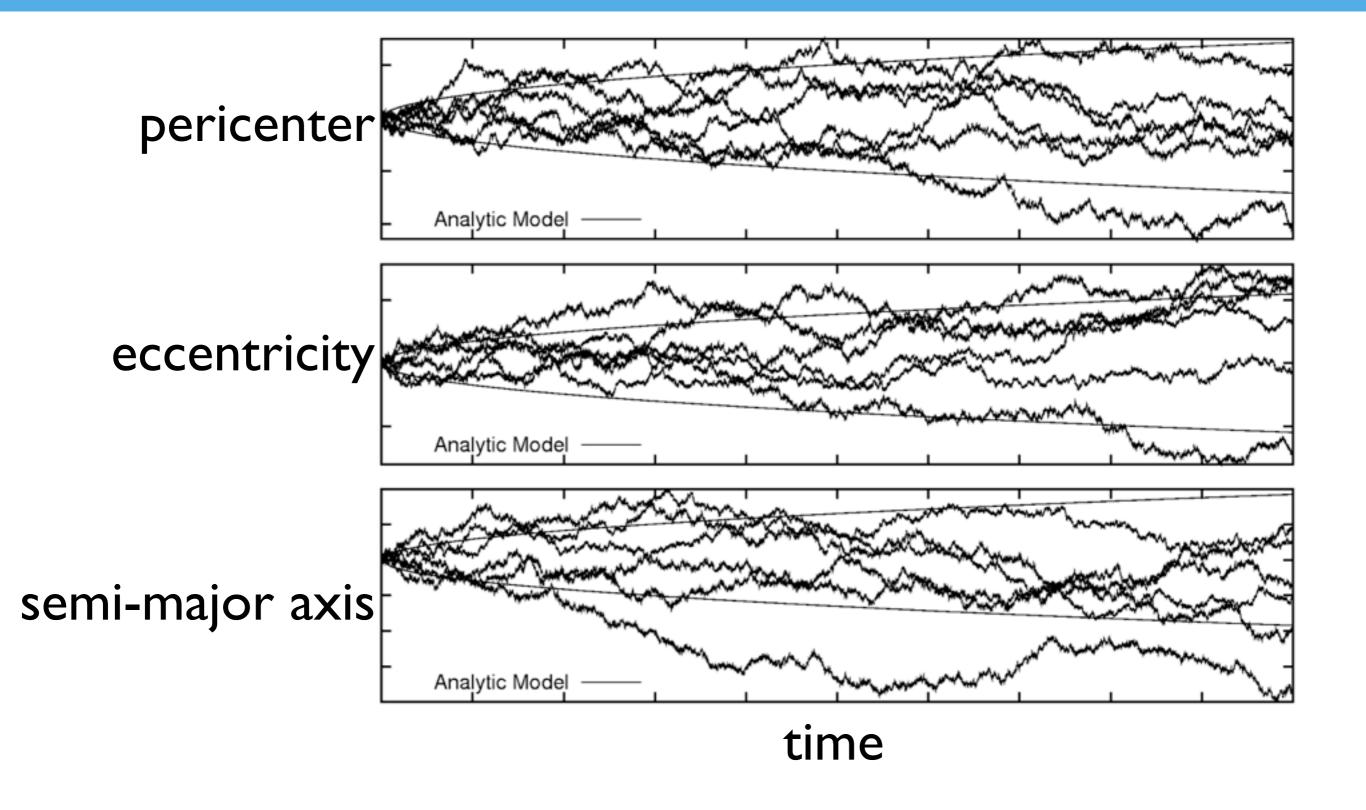


Why think about stochastic migration?

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces



Random walk in all orbital parameters

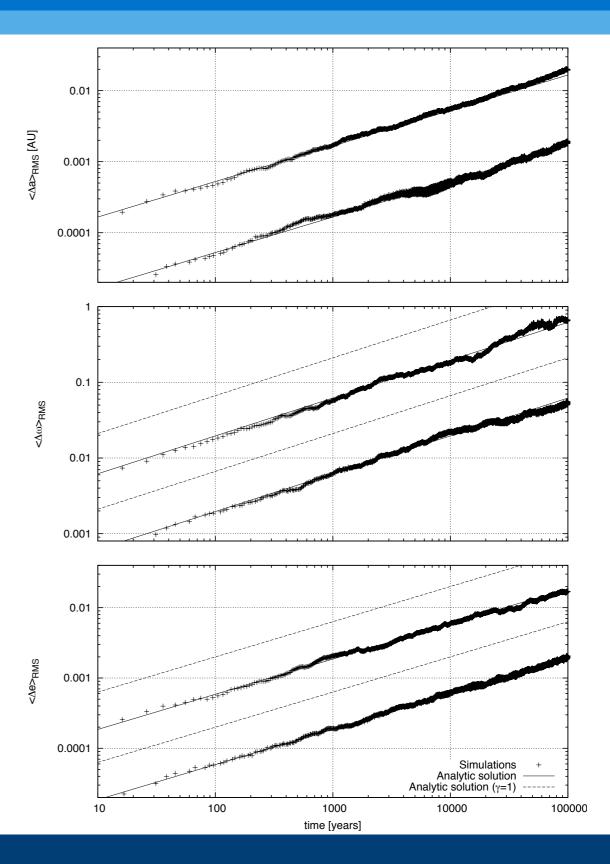


Analytic growth rates for I planet

$$(\Delta a)^2 = 4\frac{Dt}{n^2}$$

$$(\Delta \varpi)^2 = \frac{2.5}{e^2} \frac{\gamma Dt}{n^2 a^2}$$

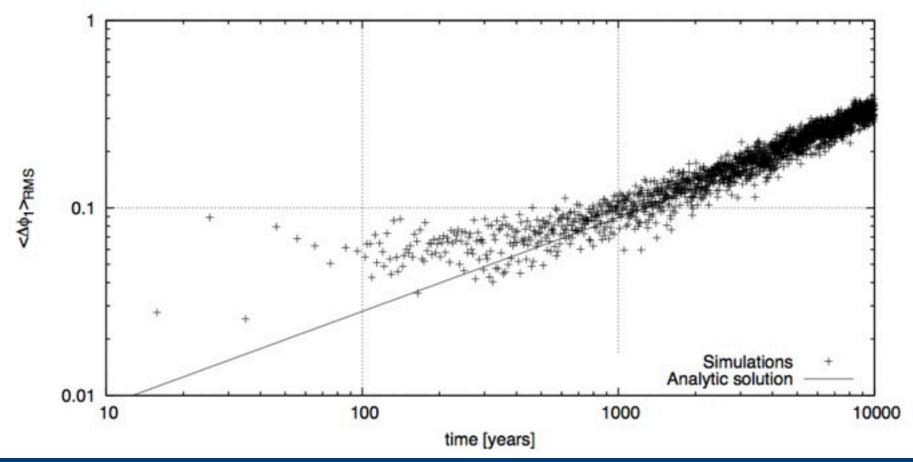
$$(\Delta e)^2 = 2.5 \frac{\gamma Dt}{n^2 a^2}$$



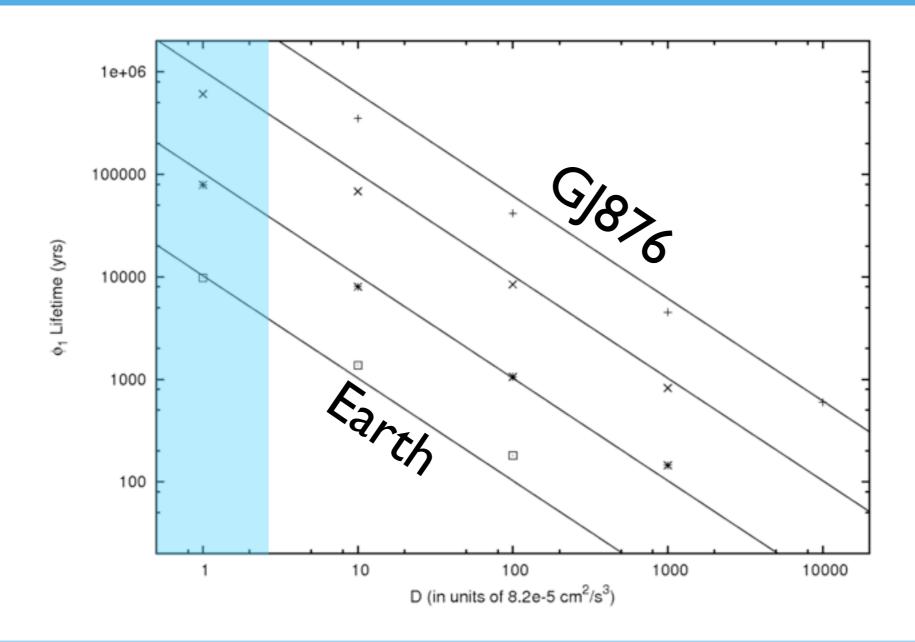
Analytic growth rates for 2 planets

$$\frac{(\Delta \phi_1)^2}{(p+1)^2} = \frac{9\gamma_f}{a_1^2 \omega_{lf}^2} D t$$

$$(\Delta(\Delta \varpi))^2 = \frac{5\gamma_s}{4a_1^2 n_1^2 e_1^2} D t$$



Multi-planetary systems in mean motion resonance



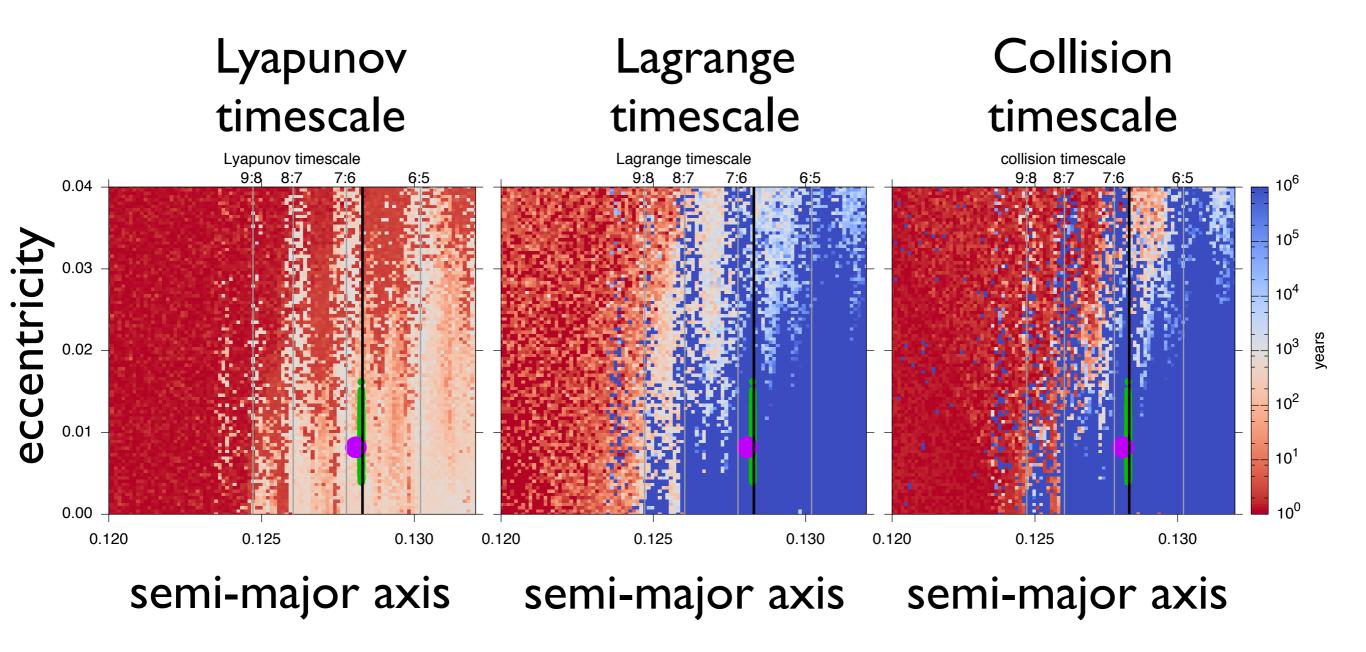
- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable for entire disc lifetime

The formation of Kepler-36

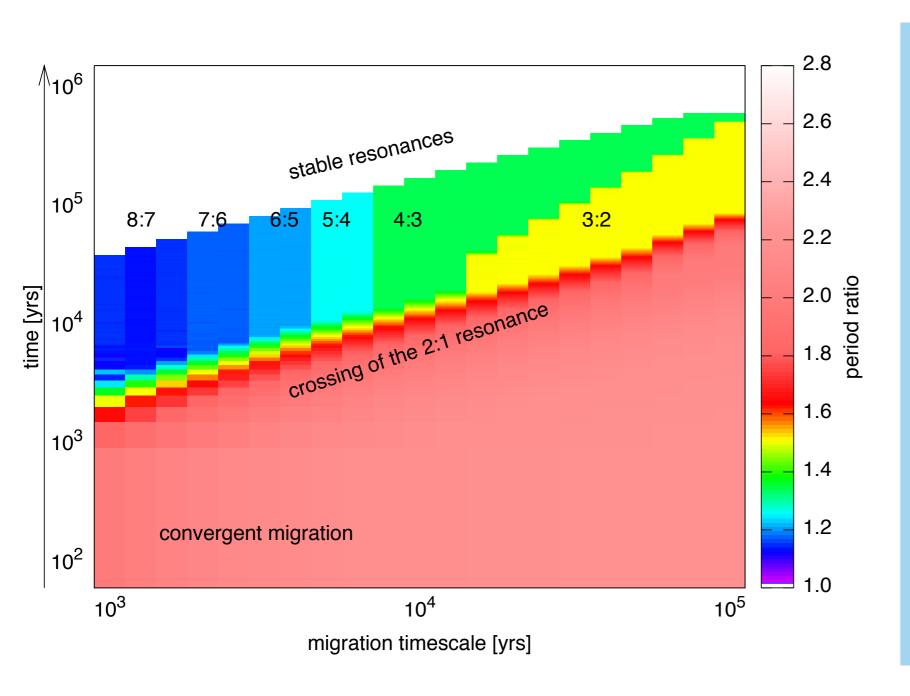
Kepler-36 c as seen from Kepler-36 b



Stability of Kepler-36



Formation of Kepler-36



- Migration rate and mass ratio determine the final resonance
- Higher order resonances require faster migration rates
- Higher mass planets end up in lower order resonances
- Once in resonance, planets
 often stay there for the rest
 of the disc lifetime

Problem with Kepler-36

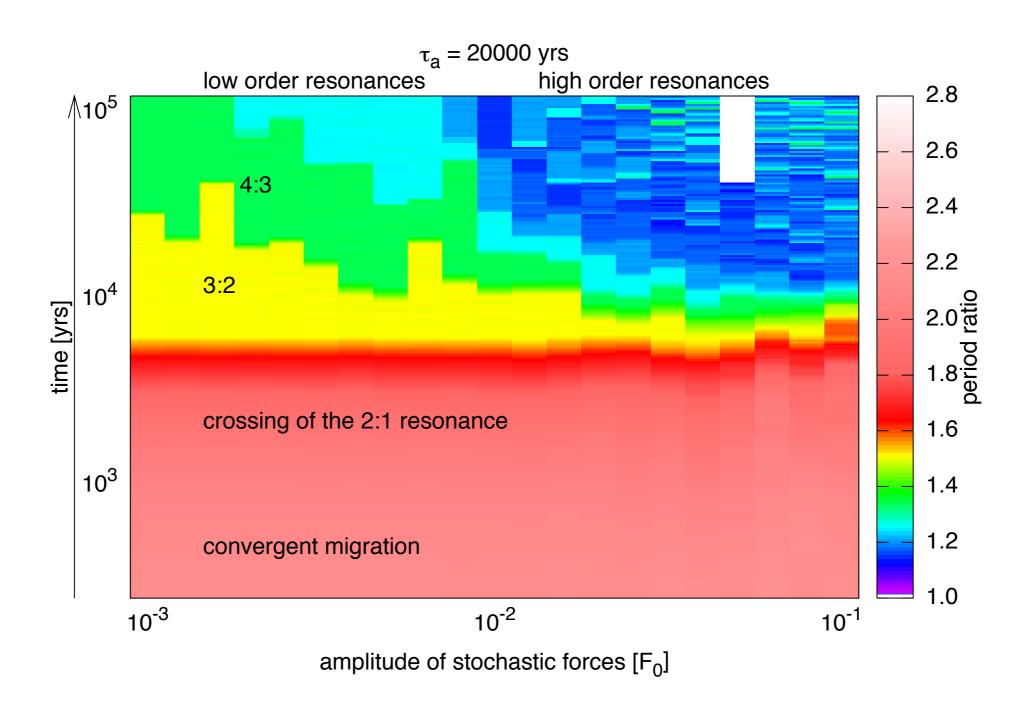
< 1000 years

Need extremely fast migration rate to capture into a high order resonance.

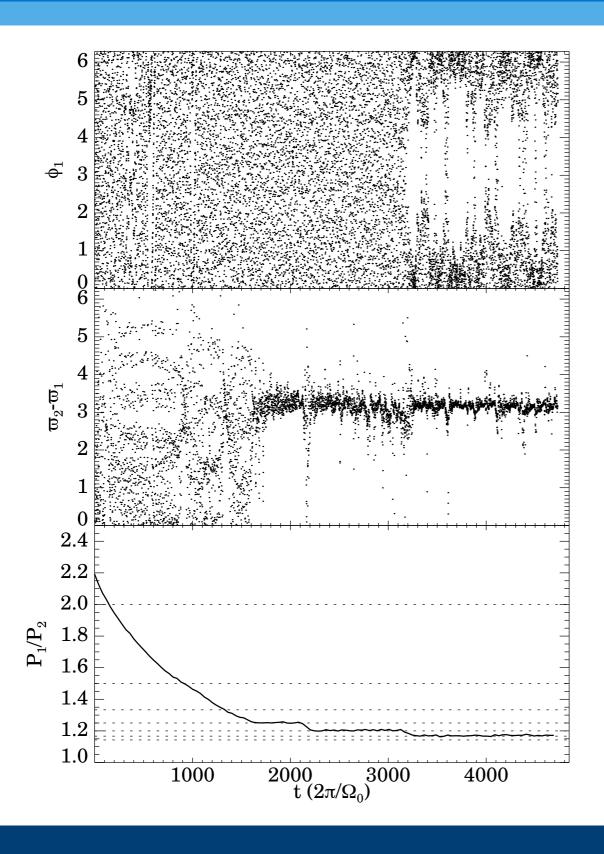
Unrealistically fast.

Planets are not large enough to migrate in Type III regime.

Solution: Stochastic migration



Hydrodynamic simulation



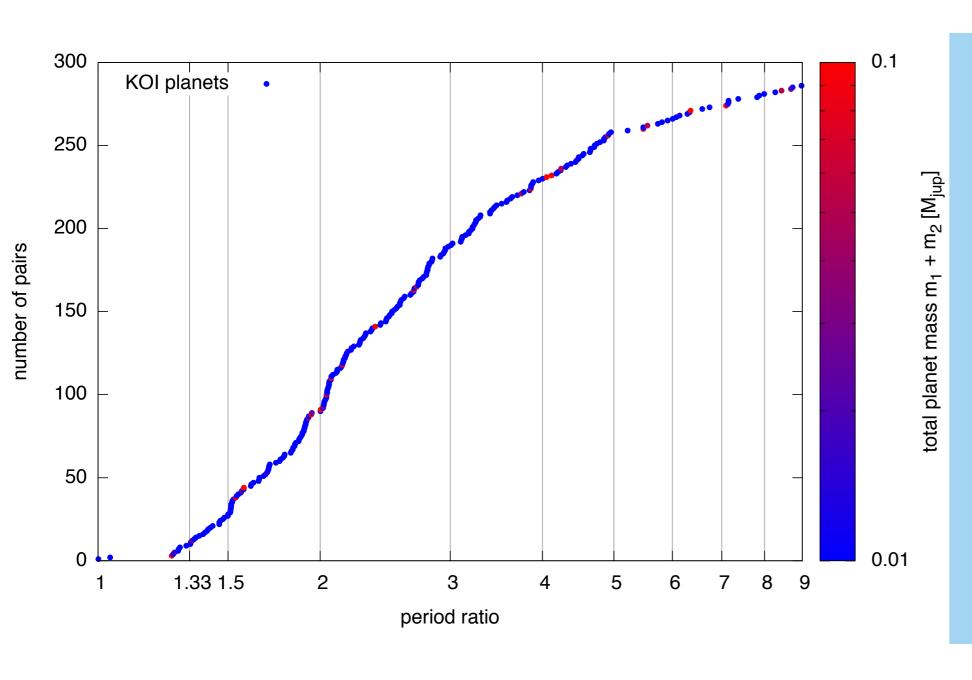
Resonant angle

Resonant angle

Period ratio

A statistical analysis

Kepler's transiting planet candidates



- Period ratio
 distribution much
 smoother for small
 mass planets
- Deficiencies near 4:3,3:2, 2:1
- Excess slightly outside of the exact commensurability

Testing stochastic migration: Method

Architecture and masses from observed KOIs

Placing planets in a MMSN, further out, further apart, randomizing all angles

N-body simulation with migration forces

Testing stochastic migration: Advantages

Comparison of statistical quantities

- Period ratio distribution
- Eccentricity distribution
- TTVs

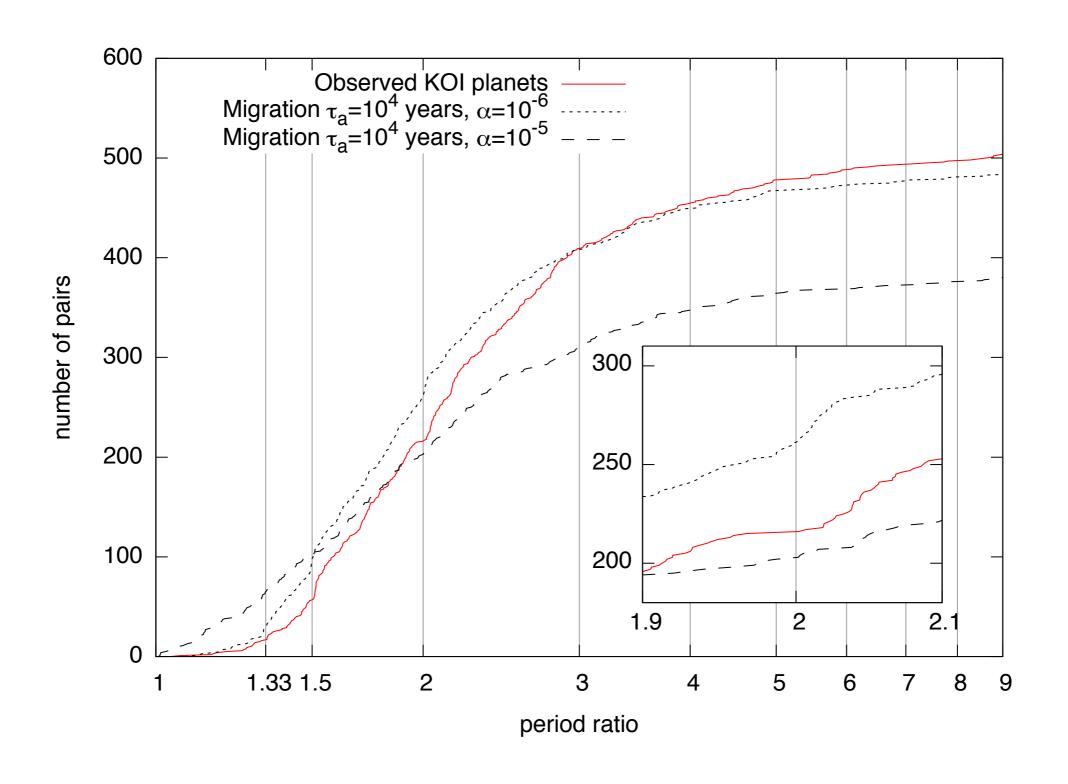
Comparison of individual systems

- Especially interesting for multi-planetary systems
- Can create multiple realizations of each system

No synthesis of a planet population required

- Observed masses, architectures
- Model independent

Preliminary results



Future expansions

Physical disk model

- ID hydrodynamic simulation
- Coupled to N-body simulations

Other physical effects

- Tidal damping
- Evaporation

Completeness

Include planets missed by Kepler

GPU based integrators

- Allows for much bigger samples
- Wider parameter space exploration

Summary

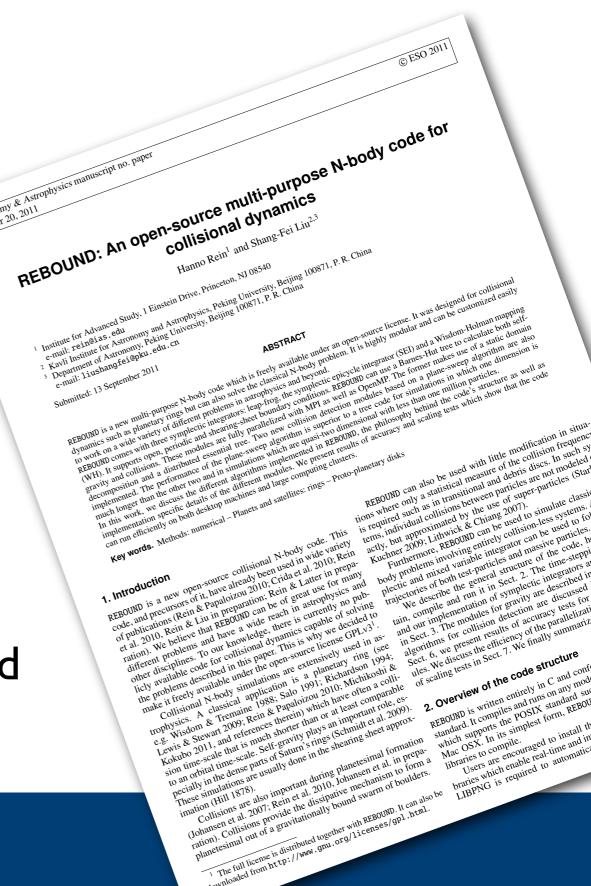
The case for stochastic orbital migration

- Stochastic migration is directly observable in Saturn's rings.
- Protoplanetary disks are turbulent due to the MRI.
- Stochastic migration plays an important role for small mass planets.
- Resonances can easily get destroyed.
- Tendency to form high order resonance.
- Very soon, we will understand how most planets in the Kepler sample formed.

Saturn's Rings

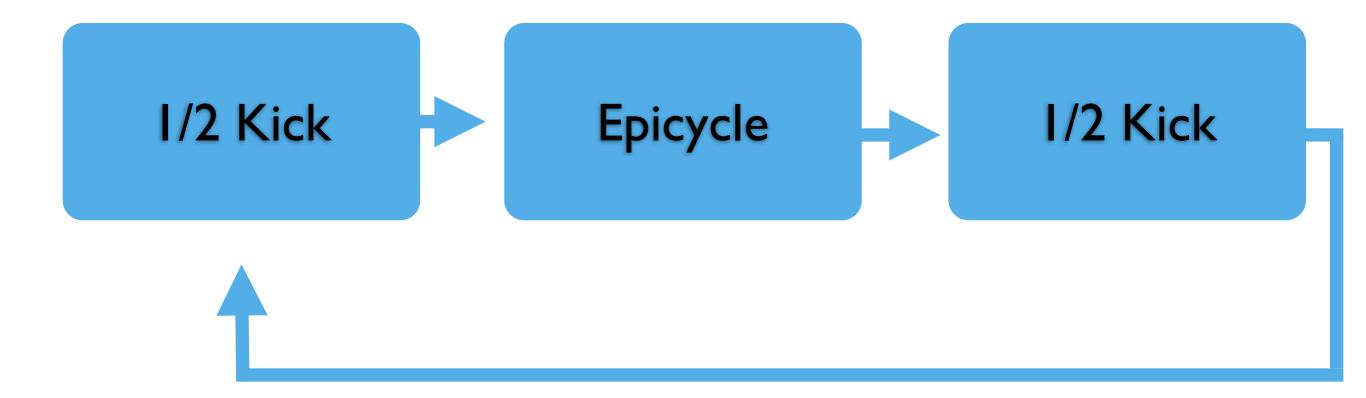
REBOUND

- Code description paper published by A&A, Rein & Liu 2012
- Multi-purpose N-body code
- Only public N-body code that can be used for granular dynamics
- Written in C99, open source, GPL
- Freely available at http://github.com/hannorein/rebound

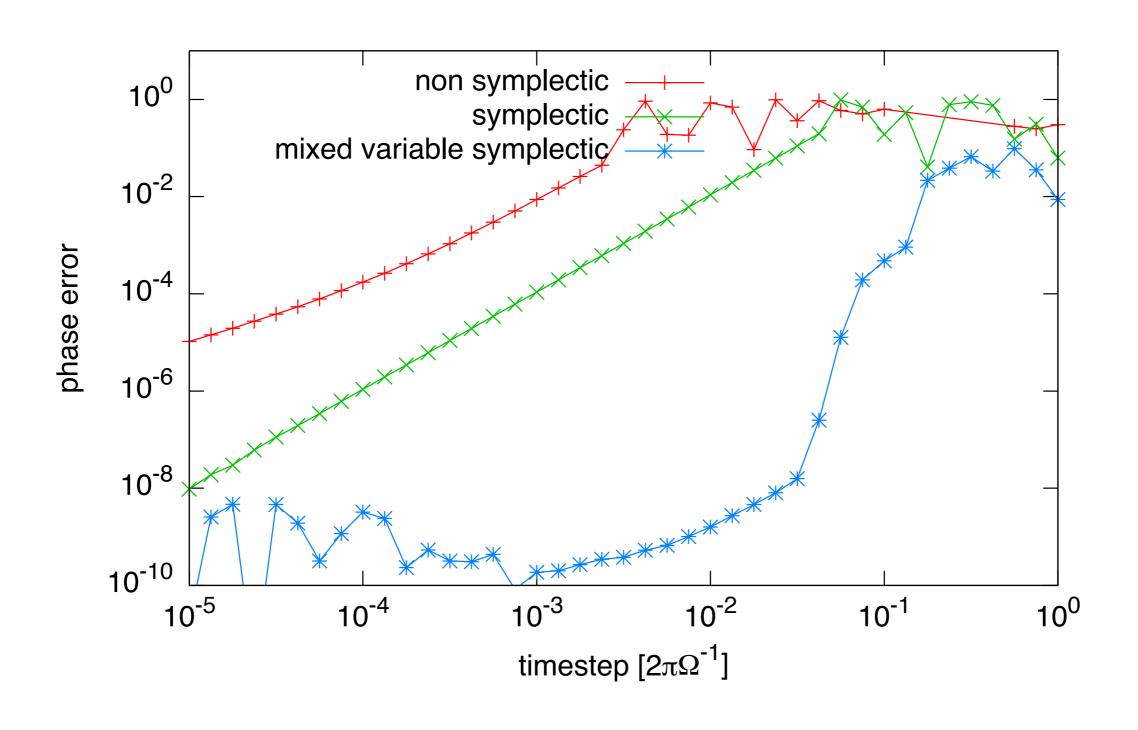


Symplectic Epicycle Integrator

$$H = \frac{1}{2}p^2 + \Omega(p\times r)e_z + \frac{1}{2}\Omega^2\left[r^2 - 3(r\cdot e_x)^2\right] + \Phi(r)$$
 Epicycle Kick



Mixed variable symplectic (MVS) integrator

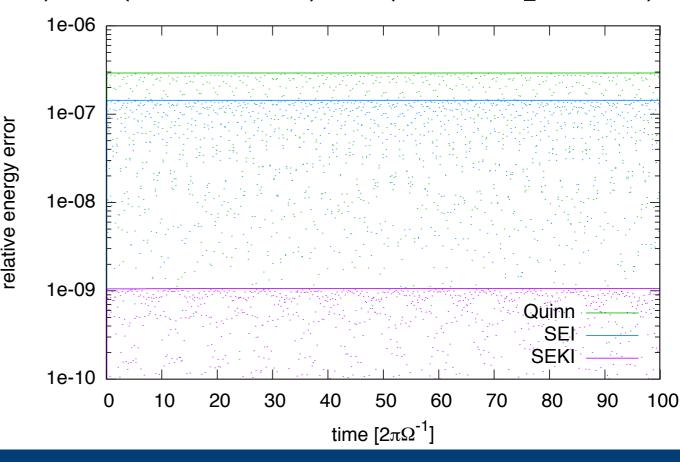


Symplectic Epicycle Integrator: Rotation

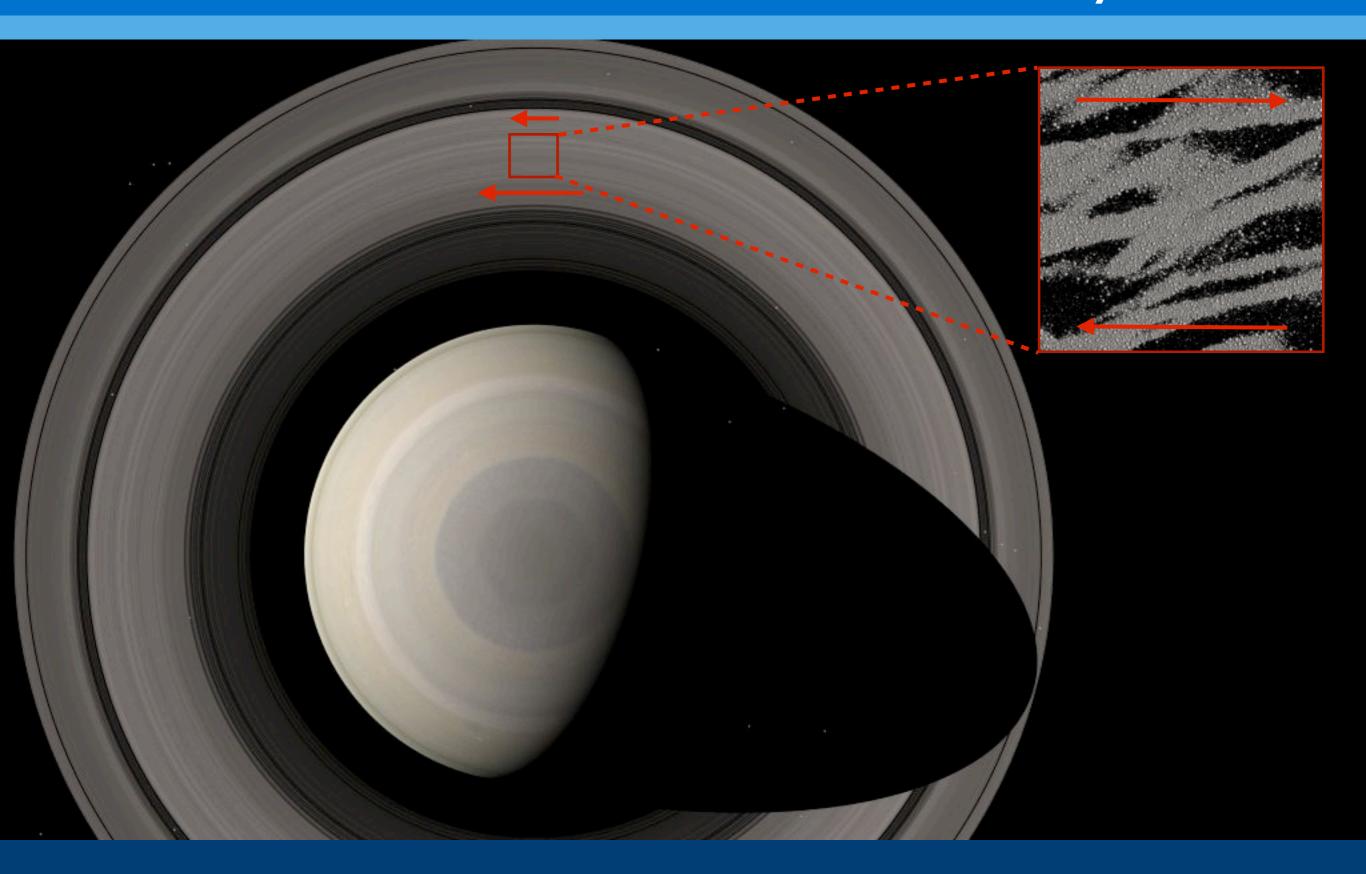
- Solving for the orbital motion involves a rotation.
- Formally $\det(D)=1$, but due to floating point precision $\det(D)\sim 1$ only.
- Trick: Use three shear operators instead of one rotation.

$$\begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\tan \frac{1}{2}\phi & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & \sin \phi \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -\tan \frac{1}{2}\phi & 1 \end{pmatrix}$$

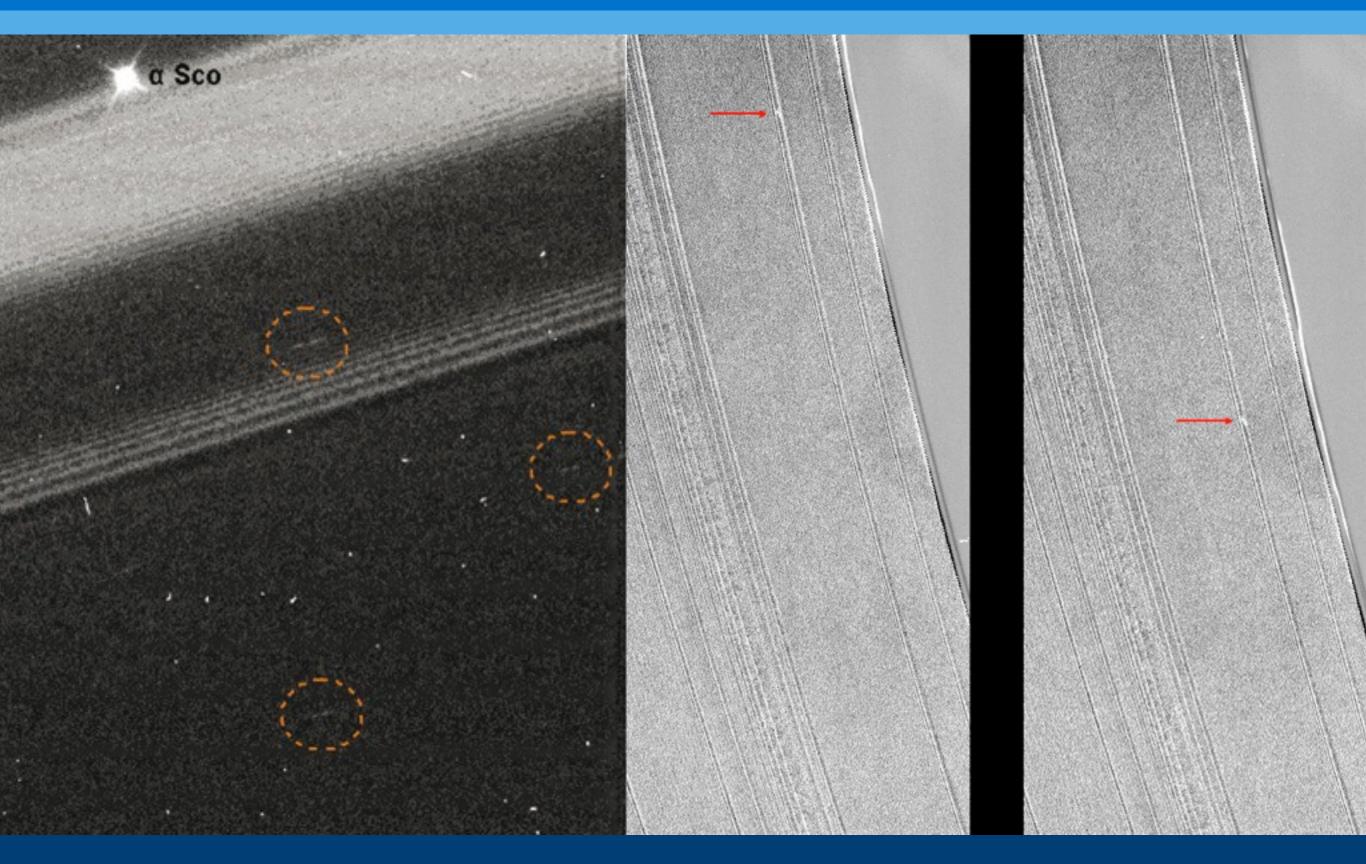
- $\det(D) = 1$ exactly for each shear operator, even in floating point precision.
- No long term trend linear trend anymore!



Saturn is a smaller version of the Solar System

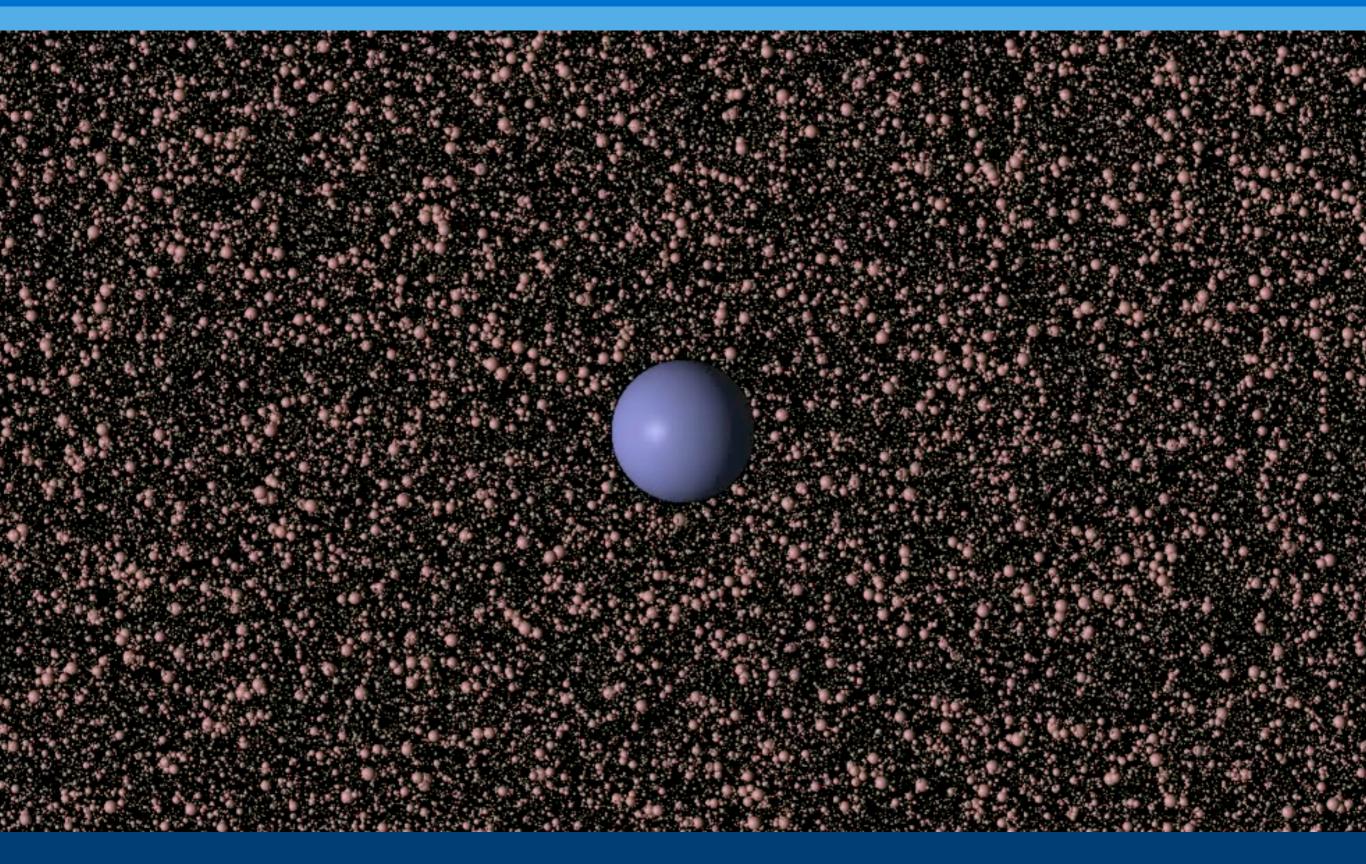


Propeller structures in A-ring



Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006, NASA/JPL-Caltech/Space Science Institute

Stochastic Migration



Motion is consistent with a random walk

